The Interface between Escherichia coli Elongation Factor Tu and Aminoacyl-tRNA
نویسندگان
چکیده
Nineteen of the highly conserved residues of Escherichia coli (E. coli) Elongation factor Tu (EF-Tu) that form the binding interface with aa-tRNA were mutated to alanine to better understand how modifying the thermodynamic properties of EF-Tu-tRNA interaction can affect the decoding properties of the ribosome. Comparison of ΔΔG(o) values for binding EF-Tu to aa-tRNA show that the majority of the interface residues stabilize the ternary complex and their thermodynamic contribution can depend on the tRNA species that is used. Experiments with a very tight binding mutation of tRNA(Tyr) indicate that interface amino acids distant from the tRNA mutation can contribute to the specificity. For nearly all of the mutations, the values of ΔΔG(o) were identical to those previously determined at the orthologous positions of Thermus thermophilus (T. thermophilus) EF-Tu indicating that the thermodynamic properties of the interface were conserved between distantly related bacteria. Measurement of the rate of GTP hydrolysis on programmed ribosomes revealed that nearly all of the interface mutations were able to function in ribosomal decoding. The only interface mutation with greatly impaired GTPase activity was R223A which is the only one that also forms a direct contact with the ribosome. Finally, the ability of the EF-Tu interface mutants to destabilize the EF-Tu-aa-tRNA interaction on the ribosome after GTP hydrolysis were evaluated by their ability to suppress the hyperstable T1 tRNA(Tyr) variant where EF-Tu release is sufficiently slow to limit the rate of peptide bond formation (kpep) . In general, interface mutations that destabilize EF-Tu binding are also able to stimulate kpep of T1 tRNA(Tyr), suggesting that the thermodynamic properties of the EF-Tu-aa-tRNA interaction on the ribosome are quite similar to those found in the free ternary complex.
منابع مشابه
Effect of trypsin modification of the Escherichia coli elongation factor Tu on the ternary complex with aminoacyl-tRNA.
The ribonuclease resistance assay has been used to probe the effect of trypsin modification of the Escherichia coli elongation factor Tu X GTP on the interaction with E. coli aminoacyl-tRNAs. First, the equilibrium dissociation constant of the trypsin-modified Tu X GTP X Thr-tRNA complex was determined to be 2.3 (0.1) X 10(-5)M at 4 degrees C, pH 7.4. Second, binding of 17 of 20 noninitiator am...
متن کاملThe crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation.
BACKGROUND Elongation factor Tu (EF-Tu) is a GTP-binding protein that is crucial for protein biosynthesis. In the GTP form of the molecule, EF-Tu binds tightly to aminoacyl-tRNA, forming a ternary complex that interacts with the ribosomal acceptor site. During this interaction, GTP is hydrolyzed, and EF-Tu.GDP is ejected. RESULTS The crystal structure of EF-Tu from Thermus aquaticus, complexe...
متن کاملThe amino acid sequence of elongation factor Tu of Escherichia coli. The complete sequence.
The complete amino acid sequence of elongation factor Tu of Escherichia coli has been established by sequencing overlapping cyanogen bromide and tryptic peptides. Sequence analysis of peptides was done primarily by solid-phase Edman degradation. Elongation factor Tu is a single chain polypeptide composed of 393 amino acids (Mr = 43,225). Its NH2 terminus is blocked with an acetyl group, as dete...
متن کاملRibosome-induced changes in elongation factor Tu conformation control GTP hydrolysis.
In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a 6.7-A cryo-electron microscopy map of the aminoacyl-tRNA x EF-Tu x GDP x kirromycin-bound Escherich...
متن کاملInteraction of mitochondrial elongation factor Tu with aminoacyl-tRNA and elongation factor Ts.
Elongation factor (EF) Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. This process requires the formation of a ternary complex (EF-Tu.GTP.aa-tRNA). EF-Tu is released from the ribosome as an EF-Tu.GDP complex. Exchange of GDP for GTP is carried out through the formation of a complex with EF-Ts (EF-Tu.Ts). Mammalian mitochondrial EF-Tu (EF-Tu(mt)) differ...
متن کامل